Produção Científica



Apresentação
23/03/2012

Fast estimation of common-reflection-surface parameters using local slopes
Lúcio Santos, Jörg Schleicher, Jessé C. Costa, and Amélia Novais. 1º Workshop do INCT-GP (2011)
Apresentação
30/11/2011

3D complex Padé FFD migration: A comparison of splitting techniques
Jessé C. Costa, Débora Mondini, Jörg Schleicher, and Amélia Novais
SEG Expanded Abstracts 30, 4420-4424 (2011)

SUMMARY
Three-dimensional wave-equation migration techniques are quite expensive because of the huge matrices that need to be inverted. Many techniques have been proposed to reduce this cost by splitting the 3D problem into a sequence of 2D problems. We compare the performance of splitting techniques for stable 3D Fourier Finite-Difference (FFD) migration techniques in terms of image quality and computational cost. The FFD methods are complex Pade FFD and FFD plus interpolation, and the compared splitting techniques are two and fourway splitting as well as alternating four-way splitting, i.e., splitting into the coordinate directions at one depth and the diagonal directions at the next level. From numerical examples in homogeneous and inhomogeneous media, we conclude that alternate four-way splitting yields results of the same quality as full four-way splitting at the cost of two-way splitting.
Apresentação
30/11/2011

Diffraction imaging point of common-offset gather: GPR data example
J. J. S. de Figueiredo, F. Oliveira, E. Esmi, L. Freitas, S. Green, A. Novais,
and J. Schleicher
SEG Expanded Abstracts 30, 4399-4403 (2011)

SUMMARY
Hydrocarbon traps are generally located beneath complex geological structures. Such areas contain many seismic diffractors that carry detailed structure information in the order of the seismic wavelength. Therefore, the development of computational resources capable of detecting diffractor points with a good resolution is desirable, but has been a challenge in the area of seismic processing. In this work, we present a method for the detection of diffractor points in the common-offset gathers domain. In our approach, the diffraction imaging is based on the diffraction operator, which can be used in both the
time and depth domains, in accordance with the complexity of the area. This method, which does not require any knowledge apart from the migration velocity field (i.e., rms velocities or interval velocities) applies pattern recognition to the amplitudes along the diffraction operator. Numerical examples using synthetic and real data demonstrate the feasibility of the technique.
Apresentação
29/11/2011

Coherence measures in automatic time migration velocity analysis
Jonathas S. Maciel, Jessé C. Costa (UFPA & INCT-GP, Brazil) and Jörg Schleicher (Unicamp & INCT-GP, Brazil)

SUMMARY
Time-migration velocity analysis can be carried out automatically by evaluating the coherence of the migrated seismic events in the common-image gathers (CIGs). The performance of gradient methods for automatic time-migration velocity analysis depends on the coherence measures used in the objective function. We compare the results of four different coherence measures, being conventional semblance, differential semblance, an extended differential semblance using more neighboring traces, and the product of the latter with conventional semblance. In our numerical experiments, the objective functions based on conventional semblance and on the product of conventional semblance with extended differential semblance provided the best velocity models, as evaluated by the flatness of the resulting common-image gathers. The method can be easily extended to anisotropic media.
Apresentação
29/11/2011

Design of all-pass operators using a genetic algorithm for mixed phase deconvolution
Dorian Caraballo L. CPGG/UFBA and Milton J. Porsani, CPGG/IGEO/UFBA and INCT-GP/CNPQ

SUMMARY
This paper present a new approach for mixed phase deconvolution. We investigate the use of arbitrary subsets of roots, distributed outside of the unit circle, to estimated mixed-phase inverse filter and wavelets. All pass filters are used to change the phase of the minimum phase filter. The influence of numbers of roots and its distributions was studied in order the obtain a optimum inverse mixed-phase filter. The optimization process to obtain the best inverse filter is performed by using a genetic algorithm. We have used the varimax norm as the object function to measure the simplicity of the deconvolved seismic trace. The method was tested using synthetic and real seismic data.
Apresentação
29/11/2011

Numerical integration in the Calculation of the 2.5-D Response of a Very Large Loop
Valdelírio da Silva e Silva, Cícero Régis, Allen Q. Howard Jr.,
Universidade Federal do Pará and National Institute of Science and Technology of Petroleum Geophysics

SUMMARY
This work presents the details of a procedure for the numerical integration of Hankel transforms in the calculation of the electromagnetic fields generated by a large horizontal loop over a 2D earth. The method performs the integration by deforming the integration path into the complex plane and applying Cauchy’s theorem on a modified version of the integrand. The modification is the replacement of the Bessel functions J0 and J1 by the Hankel functions H(1) 0 and H(1) 1 . The integration on a path going up the complex plane allows us to take advantage of the vanishing properties of the Hankel functions, so that we can calculate on very small segments, instead of the infinite line of the original improper integrals. We have applied the method to calculate the fields of very large loops, at distances and depths which are prohibitive for the traditional numerical integration methods.
Apresentação
29/11/2011

Separate P- and SV-wave equations for VTI media
Reynam C. Pestana, CPGG/UFBA and INCT-GP/CNPQ, Bjørn Ursin, Norwegian University of Science and Technology (NTNU) and Paul L. Stoffa, University of Texas at Austin, Institute for Geophysics

SUMMARY
In isotropic media we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media P- and SV-waves are coupled and the elastic wave equation should be used for RTM. However, an acoustic anisotropic wave equation is often used instead. This results in significant shear wave energy in both modeling and RTM. To avoid this undesired SV-wave energy, we propose a different approach to separate P- and SV-wave components for vertical transversely isotropic (VTI) media. We derive independent pseudo-differential wave equations for each mode. The derived equations for P- and SV-waves are stable and reduce to the isotropic case. The equations presented here can be effectively used to model and migrate seismic data in VTI media where |e −d| is small. The SV-wave equation we develop is now well-posed and triplications in the SV wavefront are removed resulting in stable wave propagation. We show modeling and RTM results using the derived pure P-wave mode in complex VTI media and use the rapid expansion method (REM) to propagate the wavefields in time.
Apresentação
05/09/2011

A experiência nos programas pioneiros de pesquisa e formação de mestres e doutores em geofísica para exploração de petróleo em parceria com a PETROBRAS, o CNPq e a FINEP, na UFBA e na UFPA
Conferência apresentada no 1º Workshop do INCT-GP pelo Prof. Carlos Alberto Dias (PhD - LENEP / UENF).
Artigo em Revista
10/07/2011

A fast modified parabolic radon transform.
We propose a fast and efficient frequency-domain implementation of a modified parabolic Radon transform (modified PRT) based on a singular value decomposition (SVD) with applications to multiple removal. The problem is transformed into a complex linear system involving a single operator after merging the curvature-frequency parameters into a new variable. A complex SVD is applied to this operator and the forward transform is computed by means of a complex back-substitution that is frequency independent. The new transform offers a wider curvature range at signal frequencies than the other PRT implementations, allowing the mapping in the transform domain of low-frequency events with important residual moveouts (long period multiples). The method is capable of resolving multiple energy from primaries when they interfere in a small time interval, a situation where most frequency-domain methods fail to discriminate the different wave types. Additionally, the method resists better to amplitude variations with offset (AVO) effects in the data than does the iteratively reweighted least-squares (IRLS) method.The proposed method was successfully applied to a deep-water seismic line in the Gulf of Mexico to attenuate water-bottom multiples and subsequent peg-legs originating from multiple paths in the water column. Combining the suggested method with the surface-related multiple elimination (SRME) has led to the best attenuation results in removing residual multiple energy in the stack. ©2011 Society of Exploration Geophysicists
Artigo em Revista
30/03/2011

Total variation regularization for depth-to-basement estimate: Part 1 — Mathematical details and applications
We have developed an inversion approach that estimates the basement relief of a fault-bounded sedimentary basin. The sedimentary pack is approximated by a grid of 3D or 2D vertical prisms juxtaposed in the horizontal directions of a right-handed coordinate system. The prisms' thicknesses represent the depths to the basement and are the parameters to be estimated from the gravity data. To obtain depth-to-basement estimates, we introduce the total variation (TV) regularization as a stabilizing function. This approach lets us estimate a nonsmooth basement relief because it does not penalize sharp features of the solution. We have deduced a compact matrix form of the gradient vector and the Hessian matrix of the approximation to the TV function that allows a regularized Gauss-Newton minimization approach. Because the Hessian matrix of the approximation to the TV function is ill conditioned, we have modified this Hessian matrix to improve its condition and to accelerate the convergence of the Gauss-Newton algorithm. Tests conducted with synthetic data show that the inversion method can delineate discontinuous basements presenting large slips or sequences of small-slip step faults. Tests on field data from the Almada Basin, Brazil, and from the San Jacinto Graben, California, U.S.A., confirm the potential of the method in detecting and locating in-depth normal faults in the basement relief of a sedimentary basin. ©2011 Society of Exploration Geophysicists
<<  <   1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68   >  >>