Produção Científica

**Dissertação de Mestrado**

Daiane Rossi Rosa. MigraÃ§Ã£o prÃ©-empilhamento em tempo de dados sÃsmicos 2D e 3D via Common Reflection Surface.Daiane Rossi Rosa. MigraÃ§Ã£o prÃ©-empilhamento em tempo de dados sÃsmicos 2D e 3D via Common Reflection Surface. 2018. Universidade Estadual de Campinas. Orientador: Martin Tygel. |

**Dissertação de Mestrado**

Edwin Fagua. Processamento e imageamento sÃsmicos de linhas crooked utilizando o mÃ©todo Common Reflection Surface.Edwin Fagua. Processamento e imageamento sÃsmicos de linhas crooked utilizando o mÃ©todo Common Reflection Surface. 2017. Universidade Estadual de Campinas. Orientador: Martin Tygel. |

**Dissertação de Mestrado**

Mayara Martins Aquino Matias. Imageamento Marchenko e CondiÃ§Ãµes de Imagem de DeconvoluÃ§Ã£oMayara Martins Aquino Matias. Imageamento Marchenko e CondiÃ§Ãµes de Imagem de DeconvoluÃ§Ã£o. 2017. Universidade Federal da Bahia. Orientador: Reynam da Cruz Pestana. |

**Tese de Doutorado**

Oscar Fabian Mojica Ladino. InversÃ£o Linearizada 3-D de Dados GravimÃ©tricos: AplicaÃ§Ã£o em Bacias Sedimentares com Perfil de Densidade VariÃ¡velOscar Fabian Mojica Ladino. InversÃ£o Linearizada 3-D de Dados GravimÃ©tricos: AplicaÃ§Ã£o em Bacias Sedimentares com Perfil de Densidade VariÃ¡vel. 2016. Universidade Federal da Bahia. Orientador: Amin Bassrei. |

**Dissertação de Mestrado**

Soraya Yukari Arashiro. AnÃ¡lise de velocidade de migraÃ§Ã£o usando difraÃ§Ãµes em meios verticalmente heterogÃªneosSoraya Yukari Arashiro. AnÃ¡lise de velocidade de migraÃ§Ã£o usando difraÃ§Ãµes em meios verticalmente heterogÃªneos. 2016. Universidade Estadual de Campinas. Coorientador: Joerg Dietrich Wilhelm Schleicher. |

**Dissertação de Mestrado**

Rafael de Andrade Silva. ANÃLISE DO COMPORTAMENTO DE VELOCIDADES ELÃSTICAS E POROSIDADE EM CARBONATOS SUBMETIDOS Ã€ VARIAÃ‡ÃƒO DE PRESSÃƒO EXTERNARafael de Andrade Silva. ANÃLISE DO COMPORTAMENTO DE VELOCIDADES ELÃSTICAS E POROSIDADE EM CARBONATOS SUBMETIDOS Ã€ VARIAÃ‡ÃƒO DE PRESSÃƒO EXTERNA. 2017. UENF. Oreintador: Marco Antonio Rodrigues de Ceia. |

**Dissertação de Mestrado**

Davi Kezen PadrÃ£o ManhÃ£es. PETROPHYSICAL HYSTERESIS PROPERTIES ANALYSIS ON CHEMICAL, TEXTURAL AND PORE STRUCTURE CHARACTERISTICS ON SEDIMENTARY ROCKS/ANÃLISE DO COMPORTAMENTO DE HISTERESE BASEADA EM CDavi Kezen PadrÃ£o ManhÃ£es. PETROPHYSICAL HYSTERESIS PROPERTIES ANALYSIS ON CHEMICAL, TEXTURAL AND PORE STRUCTURE CHARACTERISTICS ON SEDIMENTARY ROCKS/ANÃLISE DO COMPORTAMENTO DE HISTERESE BASEADA EM CARACTERÃSTICAS QUÃMICAS, TEXTURAIS E NA ESTRUTURA DO SISTEMA POROSO DE ROCHAS SEDIMENTARES. 2017. UENF. Orientador: Roseane Marchezi Missagia. |

**Artigo em Revista**

Time-stepping wave-equation solution for seismic modeling using a multiple-angle formula and the Taylor expansionWe have developed an analytical solution for wave equations using a multiple-angle formula. The new solution based on the multiple-angle expansion allows us to generate a family of solutions for the acoustic-wave equation, which may be combined with Taylor-series, Chebyshev, Hermite, and Legendre polynomial expansions or any other expansion for the cosine function and used for seismic modeling, reverse time migration, and inverse problems. Extension of this method to the solution of elastic and anisotropic wave equations is also straightforward. We also derive a criterion using the stability and dispersion relations to determine the order of the solution for a given time step and, thus, obtaining stable wavefields free of numerical dispersion. Afterward, numerical tests are performed using complex 2D velocity models to evaluate the effectiveness and robustness of our method, combined with second- or fourth-order Taylor approximations. Our multiple-angle approach is stable and provides reliable seismic modeling results for larger times steps than those usually used by conventional finite-difference methods. Moreover, multiple-angle schemes using a second-order Taylor approximation for each cosine term have a lower computational cost than the mixed wavenumber-space rapid expansion method. |

**Artigo em Revista**

Basement fabric controls rift nucleation and postrift basin inversion in the continental margin of NE BrazilIn passive continental margins, the brittle reactivation of shear zones and their role in the deformation and deposition of sedimentary basins are still a matter of debate. In this research, we investigated the role of the brittle reactivation of Precambrian shear zones in the nucleation of rift and postrift faults in the onshore portion of the Sergipe-Alagoas and Pernambuco basins in northeastern Brazil. We combine and interpret a dataset of aeromagnetic and topographic data, associated with reflection seismic and borehole data, to analyze the evolution of a portion of the Atlantic continental margin of Brazil. Our results indicate that in the crystalline basement, the magnetic lineaments are correlated with ductile structures as shear zones, and the continuity of these lineaments in the Sergipe-Alagoas and Pernambuco basins is interpreted as the shear zones below the sedimentary cover of these basins. We document the following phases of the brittle reactivation of basement shear zones: (1) the opening of the South Atlantic Ocean in the Early Cretaceous under an extensional stress regime and (2) tectonic inversion induced by the Mid-Atlantic Ridge push and the Andean Cordillera rise in the Neogene-Quaternary under a predominantly strike-slip stress regime. During the rift phase, the brittle reactivation of the shear zones controlled the locations and architectures of the rifts. These structures acted as zones of weakness and were reactivated as normal faults. The brittle reactivation of shear zones was still active during the postrift phase and was responsible for the development of compressional structures. The reverse faulting and related folding pattern indicate tectonic inversion in the Late Cretaceous-Cenozoic. The structures formed during the postrift phase under a strike-slip regime are consistent with the present-day stress field, indicating that tectonic inversion is an active phase of the Brazilian margin. |

**Artigo em Revista**

A multiscale approach to full-waveform inversion using a sequence of time-domain misfit functionsMost of the approaches designed to avoid cycle skipping in full-waveform inversion (FWI) involve calculating a sequence of inversions in a multiscale fashion. We have adopted an alternative strategy, which is inverting a sequence of different misfit functions in the time domain. This is an implicit multiscale approach in the sense that the used misfit functions are sensitive to different wavelengths, but all of the inversion steps use the same modeling algorithm and the same model grid. In the first and third inversion steps, the transmitted (early arrivals) and reflected (late arrivals) components of the wavefield envelopes are respectively fitted. The second step promotes a smooth transition between the first and third steps, by using the envelope of the complete waveform. Because fitting just the envelope of the reflected waves has a minor effect on the misfit function of the whole data set, the phases of the reflected waves are mostly fitted in the fourth step, which is based on the waveform misfit function preserving only the late arrivals. The third and fourth steps are of crucial importance to fit the reflected events. We test the sequential inversion approach with the Marmousi model using data sets with different frequencies, obtaining better estimates of the velocity field than those obtained with the classic FWI. The solutions obtained with classic FWI and sequential inversion approach degrade with a progressively higher peak frequency data set, but the classic FWI solution degrades more rapidly. |

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 > >>